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SUMMARY 
A finite element method for the transient incompressible Navier-Stokes equations with the ability to handle 
multiple free boundaries is presented. Problems of liquid-liquid type are treated by solving two coupled 
Navier-Stokes problems for two separate phases. The possibility to solve problems of liquid-gas, 
liquid-liquid-gas or liquid-liquid-liquid type is demonstrated too. Surface tension effects are included at 
deformable interfaces. 

The method is of Lagrangian type with mesh redefinition. A predictor-corrector scheme is used to 
compute the position of the deformable interface with automatic control of its accuracy and smoothness. 
The method is provided with an automatic choice of the time integration step and an optional spline 
filtration of the truncation error at the free surface. In order to show the accuracy of the method, tests and 
comparisons are presented. Numerical examples include motion of bubbles and multiple drops. 

KEY WORDS Unsteady Navier-Stokes equations Finite element method Viscous flow Free boundary flow 
Multiphase flow 

1. INTRODUCTION 

Free surface problems for viscous incompressible flow occur often in nature and technology, 
e.g. extraction, sedimentation, capillarity, coating and polymer technology, biotechnology, 
chemical technology and so on. Usually, surface tension is presented at the fluid-fluid interface 
for immiscible media. Bubbles, drops, jets and films are classical examples of hydrodynamic 
objects with free surfaces whose transient behaviour and stability are important for technology. 
Objects composed of two liquids are of interest too: multiple drops, compound jets, compound 
films, etc. 

A number of different numerical approaches have been developed for such problems based on 
relevant techniques for the fixed domain case. 

The marker-and-cell (MAC) method of Harlow and Welch' and related finite difference 
methods in velocity-pressure variables (see e.g. References 2 and 3 and references cited therein) 
seem to be the first used for this class of problems. Such methods solve the transient 
Navier-Stokes equations in velocity-pressure variables. An example application of this method 
for a mechanical problem with a gas-liquid free surface-a splash of a liquid drop onto a plate or 
in a shallow or deep pool-is presented by Harlow and S h a n n ~ n . ~  In this work the surface 
tension is not present at the interface but this restriction could be removed (see Reference 3 and 
references cited therein). Another important tool is the volume-of-fluid (VOF) method for the 
Navier-Stokes equations with free boundaries of Hirt and Nich01s.~ It also could include surface 
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tension. Although various problems have been solved by this technique, the surface tension 
approximation does not always work very well.3 

Some ideas of Harlow and Welch’ are used by Fromm6 to develop a streamfunction method 
for liquid-gas deformable interface flows using a rectangular grid in the interior of the com- 
putational domain and special interpolation formulae near the free boundary. He has employed 
his method for solving a complicated problem of jet spreading from a nozzle driven by a pressure 
peak. This problem is related to jet printers. After a time period two changes of the computational 
domain geometry take place: initially the jet disintegrates into a drop and after that a small drop 
separates from the large one. In this problem the surface tension plays an essential role and it is 
important that during the simulation its approximation displays good properties. 

A more precise description of surface tension seems to be achieved by a group of methods 
which employ a transform of the unknown domain to a standard one. Usually this approach is 
used for methods in streamfunction-vorticity variables, although it is obviously applicable also 
for velocity-pressure numerical methods. There are many works belonging to this class but we 
shall mention only a few of them. For example, a finite difference method for steady motion of an 
undeformable viscous drop in an unbounded liquid is presented by Rivkind et aL7 and is 
generalized by Rivkind’ for the case of a deformable drop. The numerical method of Ryskin and 
Lea1’~’O for steady motion of a deformable bubble is based on a similar idea. Another finite 
difference method for the same problem is developed and applied by Christov and Volkov.” The 
method of Ryskin and Leal’ is generalized for transient deformation of a bubble in straining flow 
by Kang and Leal.” Another finite difference method for transient problems with a free surface of 
gas-liquid type is used to investigate jet stability by Shokoohi and E1r0d.l~ The method of Ryskin 
and LealLo is extended for steady problems with one deformable liquid-liquid interface by Dandy 
and Leal,14 who study the rise of a drop in an infinite liquid. 

The velocity-pressure formulation seems to be more convenient than the stream- 
function-vorticity one for the implementation of finite element methods in free surface viscous 
hydrodynamics. In this formulation the boundary conditions at the free surface are natural for the 
Navier-Stokes equations and are easily applied. Various numerical methods of finite element 
type are based on this approach in both Lagrangian and Eulerian reference frames. 

A combination of the transformation to a standard domain and the MAC method in the 
context of finite elements is present by Piva et a l l 5  It was successfully used for surface-tension- 
driven flows by Strani and PivaI6 and for thermocapillary convection by Strani et a l l 7  

A general FEM scheme employing the Lagrangian approach is included in the book of Connor 
and Brebbia.” It uses ideas from the finite difference methods of Harlow and Welch’ and Hirt 
et a1.’ In the Lagrangian approach the finite elements move with the liquid and after a certain 
time period they naturally become too distorted or stretched. Therefore a mesh redefinition has to 
be performed from time to time. A method of this type is used to model the behaviour of a bubble 
near a plate by Nakajima and Shima.I9 The free surface shape computed in this work is non- 
smooth and non-physical, which indicates poor approximation of the surface tension. Grid 
redefinition is not used and the calculations are simply stopped when the mesh becomes too 
irregular. An example of a fully developed finite element Lagrangian method is given by Bach and 
Villadsen” (see also references cited therein). They simulate a wave motion in a vertical film, 
employing a grid redefinition technique. Some comparisons of the numerical results with 
experiment are presented. 

Finite element methods employing the Eulerian approach are widely used for stationary free 
surface problems. A review of such methods and the related references are presented in the book 
by Cuvelier et al.” One especially efficient method for such problems is proposed by Kruyt 
et al.” and a die-swell problem is treated numerically as an example. 
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The numerical methods for unsteady free surface viscous flow employing the Eulerian ap- 
proach need an algorithm for finding the positions of the mesh nodes at eich time level as a 
function of the position of the interface. The mesh nodes will not be fixed in time nor moving with 
the fluid as in the Lagrangian approach. This situation is considered by Lynch and Grayz3 for the 
flow in a deforming region and developed to the level of a general approach by No grid 
redefinition is required if the topology of the mesh is not changed during the calculations. 
A calculation of the element matrices is needed at every time step as for Lagrangian methods. 
A non-linear discrete system of equations is obtained for every time step owing to the presence 
of the classical convection matrix. The study of Keunings” is an example application of this 
approach to viscous free surface flows. The stability of Newtonian and viscoelastic jets is studied 
by direct simulation of the temporal development of the initial shape disturbance. 

In the present paper a Lagrangian-type numerical method to handle the transient 
Navier-Stokes equations in velocity-pressure variables for domains with one or several free 
boundaries is presented. The surface tension is considered as an example of surface force. The 
method can treat one free boundary of the type gas-liquid and several of the type liquid-liquid. 
Its characteristic features are: automatic choice of the time integration step; automatic control of 
the accuracy of the computed free surface and its smoothness; optional usage of splines for the 
filtration of the error in the velocity at the interface; special procedure for solving the discrete 
system of equations and possibility to change the number of mesh nodes and mesh topology 
during the calculations. 

The numerical method presented here is devised for numerical modelling of the transient 
behaviour of deformable fluid particles-bubbles, drops and multiple drops-but it could be 
applied to any other multiphase problems. Numerical examples involving flows of one, two and 
three liquid phases are considered. 

Preliminary notes by Shopovz6 and Shopov et aLZ7 contain information about this method. A 
numerical study of bubble motion to a rigid wall by Shopov et ~ 1 . ~ ~  is performed by means of the 
present method and contains a number of comparisons with the numerical and experimental 
results and asymptotic solutions of other authors. In this paper we concentrate our attention 
mainly on the description of the numerical method and present a couple of numerical examples in 
order to give a feeling for the scope of its possible applications. 

The rest of the paper is organized as follows. The mathematical model to be considered is given 
in Section 2. In Section 3 the numerical method is described, while in Section 4 numerical 
examples are presented. Section 5 contains conclusions from the study. 

2. GOVERNING EQUATIONS 

Consider two immiscible liquids with deformable interfaces between them. We shall suppose 
that the sth liquid has constant density ps and viscosity ps. The gas phase, if present, is assumed 
to be in contact with the first liquid (see Figure 1). The surface tension coefficients oi at the 
interface Ti ( i  = 1,2) are also constant. 

As usual in modelling gas-liquid free surfaces, the gas is assumed to be incompressible and 
ideal, i.e. inviscid, and the pressure in the gas phase to be a constant with respect to the space 
~ariable:~.  2 5  

Po = P o w  (1) 

Remark I .  The function po ( t )  is determined from the condition that the volume of the gas phase 
is constant in time. Hence p o ( t )  has not to be specified; it is a Lagrangian multiplier for this 
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X 

Figure 1.  Sketch of principles of free surface problems 

condition. Naturally, if po( t )  has an arbitrary value then the volume of the gas phase will expand 
or diminish. This approach has been used also in the numerical solution of stationary problems." 

For each liquid phase we write the Navier-Stokes equations in dimensionless form:'*, z5 

where V(')((u("), d')), p(') and F(') are respectively the velocity, pressure and body forces in the sth 
liquid, D/Dt=d,+(V-V) and l = p z / p , .  We consider this equations for the 2D plane and 
axisymmetric cases. 

We study here only the case of Newtonian liquids for which 

T(')= Re-' D(VC')), U(')=qRe-' D(V'')), (4) 
where Dkj(V'")=0'5(akV~'+ajvp)), i=  1,2, is the shear stress tensor, q=pz /p l ,  Re= Uolp , /p l ,  
U ,  is the reference velocity and I is the reference length. 

We shall refer to the liquid-liquid interface as the first one and to the gas-liquid interface as the 
second one (see Figure 1). We write their equations in the form S,(X, t ) = O ,  i =  1,2. 

For the free surfaces we write the standard kinematic conditionz5 

DSi/Dt = 0. ( 5 )  
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On the liquid-liquid free surface rl the standard boundary conditions are obtained from the 
full surface forces balance and the continuity of the velocity field across the boundary:' 

u(') * n - u(') . n + (p(') - p"))  n - R, l r l  = 0, (V")-V'~')I,, =o, (6a, b) 
where n is the unit normal to I', and R, is the vector of surface forces at r,. If we take in (6) the unit 
outward normal to a, then the vector R, has to be taken with the opposite direction. The 
condition (6a) means that the stress tensor jump over the free boundary is equal to the vector of the 
internal interface forces. Naturally it consists of two scalar conditions in the 2D case-say balance 
of the forces normal to the interface and of those tangential to it. If the surface force R, is directed 
perpendicularly to the interface as the surface tension one (13) then the boundary condition (6a) 
implies continuity of shear stresses across the free boundary. 

In the gas phase the stress tensor reduces to the internal pressure and so at the gas-liquid 
interface (6a) reads 

U(').n+(Po"''))n-R~ lr2=0, (7) 
where n is the unit outward normal to a2 and R, is the vector of surface forces at I',. 

applied: 
At infinity and at the rigid boundaries (see Figure 1) the standard no-slip conditions are 

v lr3 = v, 9 V, is a known function. (8) 
The function V, in the boundary condition is equal to the velocity of the rigid interface motion. 

The standard symmetry boundary conditions are used on the line of symmetry r4. If it is the 
Naturally it is zero at quiescent walls. 

axis y ,  they read 

4% Y)' - u ( - x ,  Y),  4x7 Y )  = u( - x,  Y),  P(X7 Y )  "P( - x,  Y).  (9) 

(10) 

The symmetry condition at the cross-point Ai of the free surface Ti and r4 is standard: 

si (x ,  y )  = si ( - x, y) ,  i = 1,2. 

We use the symmetry conditions to derive the principle of virtual work in Section 3 in the form 
(9) and (lo), but they can also be formulated equivalently as 

w a x  I r4 = 0, u I r4=0, av/ax lr4 = 0, aslax I r4 = 0. 

The initial conditions for the velocity and the position of the free boundaries are of the form 

vIt=O=vo, S i I , = o = S i , o ,  i =  1,2. (1 1) 

Here we consider only gravity and surface tension as examples of body and surface forces 
respectively: 

F, = grad H, ,  s = 1,2, H,= - F r - ' y ,  F r = U i / g l ,  H , = I H , ,  (12) 

R,  = ( l /  We)(l/R, + l/R,)fi, We= U o p l / a , ,  R , = K R ~ ,  K = ~ J , / O ~ .  (13) 

The direction of the gravity force is assumed to be opposite to the direction of the axis y ,  R ,  and 
R ,  are the two main radii of curvature, g is the gravitational acceleration and ti is the unit normal 
pointing to the centre of curvature. 

At the contact points (if any) of two interfaces (in our case a free surface rl or r2 with a rigid 
body surface r,) the specification of the contact angle is 

r (A , ,  3 )  = alp3, T ( A 2 ,  3 ) = d ' ' 3 ,  (14) 
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where z is the unit positive tangent to 0, (i.e. its direction indicates anticlockwise bypass of a1) ,  
criJ are known vectors and Ai, are points from Ti n Tj. This is necessary only if surface tension is 
present at the interface. 

At the line of symmetry the condition (10) yields 

W4)=(1,0). (15) 

3. NUMERICAL METHOD 

3.1. Principle of virtuul work and initial system of equations 

The principle of virtual work is used to discretize the equations formulated in the previous 
section in space." This is. the Galerkin formulation of equations (2H4) and (6H10) and in our 
case it reads 

[(DV(')/Dt) * GV("+Re- D(V(") * D(6V('))-p(')V BV'')-F(') * 6V(')] dQ 
0 1  (f) 

+ [ [A(DV(''/Dt) 6V(2) + qRe- D(V(')) * D (6V2)) - P ( ~ ) V  - V(')- F(') - 6 V 2 ) ]  dQ 

s 
Q2 ( t )  =sr, R, . 6V"'ds+sr2R2 .6V(2)ds+~r2  p,dV(')*nds, 

V(1)-V(2)Ir =o, V(s)Ev;', Bv(s )€vp ,  p@', 6p(S)€M(S), s = l , 2 ,  (16) 

where dR = dxdy, ds = (a2 + j 2 ) l I 2  dq, x = x(q) and y = y(q) in the plane case and dQ = xdx dy and 
ds = x( i '  + j 2 ) ' I 2  dq in the axisymmetric case. The orthogonal co-ordinate system is Oxy and in 
the axisymmetric case x plays the role of the polar radius r. The spaces Vp) and are subspaces 
of H,(Q,(t))", n = 2 ,  3, and L2(QS(c)) respectively, s=  1, 2. 

In order to derive (16), the momentum equation for the first (resp. second) liquid phase (2a) 
(resp. (3a)) is multiplied by the velocity variation 6V'" (resp. 6V2))  and integrated over Q,(t) (resp. 
Q,(t)); the two parts are then added together. Integrating by parts over Q , ( t )  and Q,(t)  and using 
the surface force balance conditions (6a) and (7), we get (16). The condition (17) is obtained in the 
same way without integration by parts. The velocity continuity condition (6b) and the essential 
boundary conditions for the velocity (8) are included in the definition of the velocity admissible 
functions in the standard way." 

If the problem is symmetric with respect to a line then it is convenient to use (16) and (17) in a 
half-domain. If the line of symmetry is the axis y then Q,(t), Q2(t) ,  r , ( t )  and r,(t) have to be 
substituted in (16) and (17) with their intersection with Ihe half-plane (X (x, y): x > O}. The 
symmetry conditions (9) and (10) are used to motivate this operation. 

Consider a finite element approximation for the velocity and pressure: 

where Ui are nodal unknowns for the velocity and p k  are unknowns for the pressure. 
Below we state the admissibility conditions for conforming finite elements for the Galerkin 

formulation (16) and (17). The velocity approximation has to be continuous in Q(t)  =a, (t)uQ,(t). 
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The essential BCs (8) for the velocity have to be applied on vh. For the pressure approximation, 
discontinuities at the finite element interfaces are allowed. In our case this is very convenient since 
the pressure is physically discontinuous over the deformable interface. For the pressure no 
essential boundary conditions are required except its value at one fixed point. In all examples 
considered here this will be the point of truncated infinity at the line y. 

We employ the quadrilateral isoparametric Q , / P ,  finite element introduced by Engelman 
et and recommended by Fortin et aL31 and Cliffe and Lever.32 It possesses nine nodes for 
velocity and linear discontinuous pressure: 

9 

i =  1 
v h ( t ?  ?)= q)vi ,  P h  (5, q)  = P O  + P1< + PZ v]?  (19a,b) 

where ( and 4 are the local co-ordinates in the standard reference square [ - 1 ,1 ]  x [ - 1,l-J.. 

computational domain using the characteristic function X ,  of R,(t), s = 1,2: 
It is convenient to introduce notations for the functions and coefficients in the whole 

V(X)  = v y x )  x 1 ( X )  + V'Z'(X) x, ( X ) ,  P ~ ~ ~ = P " ' ~ ~ ~ ~ l ~ ~ ~ + P ' 2 ' ~ ~ ~ ~ 2 ~ ~ ~ ,  

F=F,Xl  +F,X,, 2 = l . X 1 + I X , ,  ,iI = R e -  ' X, + qRe-  ' X , ( X ) .  

To obtain a semidiscrete FEM system of equations from (16) and (17), it is enough to use for 6V 
the basis functions ai and for 6 p  the basis functions nk: 

[ I (DVh/Dq  ' @ j +  fi D(Vj,)' D ( @ j ) - P h v @ j - F  ' @ j ]  dQ=q1 ( @ j ) +  (p2 ( @ j ) +  Cpo(@j),  (20) I,, 
in,, v vh nk dQ =o, 

q2 ( @ j ) = J r 2  R, Qjds, h 
(21) 

where 

qo (aj) = p o  Qj * n ds. q1 ( ~ j )  = Jr R, @ j  ds, 

The functionals cpl and (p2 represent the contribution of the surface tension and are computed 
directly. This yields nearly the same results as the method of R ~ s c h a k ~ ~  but the former is more 
convenient for us because of some programming reasons. 

We apply the fully implicit scheme in combination with the Lagrangian approach to discretize 
the full time derivative in (20) and (21). At the time moment t the resulting linear system is 

7 - l  M(U-U, )+AU-BTP=F,  BU=O, U = { U i } ,  P={Pk} ,  (22a-d) 

A. .= ,iID(@i)*D(@j)dR, "' I,, Mi, j =  jn(c) loi * Qj dQ, 

F * @jdQ + r~ 1 ( @ j  1 + ( ~ 2  ( @ j  ) + VO(@j), Bi, k = In ( t ,  v @i n k  dR. (23) 
F j =  6,) 

The vector UL of the velocity unknowns at the previous positions of the mesh points is defined 

(24) 
as 

X ( t )  = X ( t  - T )  + TV(t - T ) ,  v(t - T )  =c UL, i@i(t  - 2). 

Remark 2. As mentioned before, p o ( t )  is unknown and hence the RHS of (20) and (23) is known 
up to a constant. This difficulty is overcome in an elegant way in the next subsection. 
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3.2. FEs in internal variables 

The systems of equations (22) is partially solved during the stage of computing of the local 
matrices and assembled as described by S h ~ p o v . ~ ~  This procedure is similar to the divergence- 
free approach,21 but the numerical method is still considered as a velocity-pressure one. We shall 
sketch it here because this information is essential for the grid redefinition step and for the 
elimination of the function po( t ) .  

The velocity ucknowns { U }  are partitioned into two classes, basis (internal) ones {fi} and 
non-basis ones { v"}: 

Roughly speaking, 6 are the unknowns which can be expressed by the incompressibility 
condition (22b). 

We solve systems only for internal variables, which comprise about half the overall unknowns 
(i.e. unknowns for the velocity and pressure). Knowing these, we can calculate by a simple explicit 
formula the full set of overall unknowns. The full set of velocity unknowns (except those at the 
centroid of every FE) are required at the Lagrangian time step. 

The partitioning of the unknowns is realized in three steps. These are performed by means of 
simple operations on the shape matrices W: 

V, = W * P, P = { 1, L 45 t2, t?, rz, r21, 5v2, t 2 V 2  1 (26) 
First, the evidently non-basis unknowns are the velocities uo and uo at the centroid of the finite 

element and they are expressed through (ul, ul, . . . , uB, uB) from (22b). Substituting these 
unknowns in the velocity approximation, we obtain a new form of the initial finite element; the 
pressure is approximated by a constant. This procedure is applied by many a ~ t h o r s . ~ ' , ~ ~ ~ ~ ~  

{uo, uo 1 € { $1, ( u o ~ ~ o ) = C { u i ~  u i , U i , i + l , U i . i + l } .  (27) 
Practically, this is an algorithm to eliminate { u o }  and { u o }  from (22b) and {pl}  and { p 2 }  from 

(22a). It is performed at local level before assembling the local matrices. 
Next we have to separate from the remaining variables the remaining non-basis ones. For this 

operation we have to change the variables ( u ~ , ~ +  1, u ~ , ~ +  ) at the midpoints of the sides with the 
circulation and the flux variables for the curvilinear side, ai = (Pipi, i +  Pi + ): 

where the tangent is arbitrary but fixed at the global level for every finite element side. This choice 
is performed automatically in the programme code and recorded in an appropriate way. The 
normals in (28) are obtained by rotation of the tangents to the angle - n/2. This is the second step. 
All circulation variables are basis (internal) ones. They are of the order O(h) so we norm them: 

Gi = 11 di 11 - 1 ci, Ci=(PiPi+ 1)  (a linear segment), (29) 
which physically means that G-variables are averaged tangential velocities along the sides. 

employ an implicit algorithm based on the mesh streamfunction, defined as 
The third step is to divide the flux variables into internal and non-basis ones. To do this, we 

" i +  1 = Ti + Q i ,  (30) 
where the notations are local; the normal in the evaluation of Qi is the local positive tangent 
rotated to -n/2. 
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Using (22b), it is easy to see that (30) is a correct recursive definition. The last change of 
variables is 

Q i =  'Pi+ 1 - ' P i .  (31) 

(32) 

The internal variables are 

{ 0 }  = { u i }  u { Q }  LJ {Gi} LJ {Yi } .  

As a result of these operations we obtain a new approximation in which the parameters are 
only internal variables, (see Figure 2): 

v h = x  oi6i. (33) 
After eliminating the non-basis variables from the system (22) by an appropriate algorithm,34 

we obtain a new equivalent system in internal variables 

z -  G (0- O,)+ A O = F. (34) 
Both matrices fi and A are positive definite and symmetric. This system corresponds formally 

to the principle of virtual work (16) with the zero-pressure approximation: 
- 

~(fjvh/Dt).6j+@fvh* fhj- F * GjdR= 'pl (gj) + ~p*(6~)), (35) 6,, 
and zero gas pressure constant, p o ( t )  = 0. 

during transformations from (22) to (34), or equivalently, 
Remark 3. The functional 'po is absent from (35) because its contributions cancel each other 

- 
'PO (Qj) ~0 (36) 

owing to the construction of gj;  for the specific form of 6j see Reference 34. 

Thus, using the internal variables procedure for solving the system of equations, we are able to 
eliminate the difficulty with the unknown function Po@).  From the physical point of view this is 
also natural because the volume of the gas phase is automatically constant in time owing to the 
incompressibility of the ambient liquid (this is automatically imposed by the divergence-free 
principle of virtual work (35) and hence the Lagrangian multiplier for this condition is redundant. 

G 

Figure 2. FE in internal variables 
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The systems (34) can be treated in various ways. We usually apply a variant of the square root 
method for band-symmetric positive definite matrices from Reference 18. Our systems involve a 
moderate number of unknowns and the computer time expenses are reasonable. We also employ 
the successive overrelaxation method. The acceleration parameter is taken to be 1.41 and this 
value is obtained experimentally. The computer efficiency of both methods appears to be nearly 
the same. The iterations are stopped if two successive iterations differ by less then 5 x in the 
uniform norm. The employment of more efficient iterative methods is advisable since we have in 
hand a good initial guess for the unknown vector. 

The described algorithm for the system (22) possesses a couple of advantages. The number of 
unknowns is substantially reduced. The systems obtained are positive definite with a modest 
number of unknowns and this allows us to treat them in a simple way. The unknown pressure in 
the gas phase is eliminated from the system of equations to be solved. The incompressibility 
condition (22b) is satisfied identically and exact mass conservation holds at every time level. In the 
course of the computations we also obtain the streamfunction, which is useful for mechanical 
representation and interpretation of the results. 

Of course, other methods can also be applied to treat the initial system (22). Usava iteration or 
penalization techniques could be employed to satisfy (22b), but in this case some additional 
problems with the functional cpo remain. 

3.3. Grid redefinition 

A typical feature of Lagrangian methods is that they require a regridding, which can be 
performed in three basic steps (see e.g. Reference 20 and references cited therein). For divergence- 
free methods an additional fourth step is necessary. 

(i) Define a new conforming triangulation r, with nodes {Ai}. 
(ii) For every Ai find FE e; from the old triangulation Fk so that A i € e J .  
(iii) Find V(Ai)=Vb,,.(Ai) using the old velocity field Vb at s g .  In this way the new velocity 

field V, at r, is defined. 
(iv) Define a discretely divergence-free approximation v, of v, at the triangulation F,,, 

i.e. V, has to satisfy (17) or, equivalently, (22b). 

The first three steps are performed in the general frame of the standard appr~ach~’ . ’~  with 
some small differences in the algorithms2’ whose description here seems unnecessary. 

To perform the last step, we use the residual R(V, rj) in (17) for the velocity field V as a 
practical measure of the deviation of V from a discretely divergence-free one at the triangulation 
5, 

C Qe(v, a i ) = r e ,  A, = { ai; ai c de} ,  max )r,1 =R(V, r,), e E F , ,  (37) 
A, 

where Q ,  is the flux through the side ai of the element e with respect to the external normal. 
Evidently the vector field v,, or equivalently the vector of the nodal variables (V(A,)} = V 
(without variables at the centroids), is discretely divergence-free at the triangulation F,, iff 

By construction the old velocity field Vi is divergence-free at the old triangulation Fi, but in 
R(V, F , ) = O .  

general this is not true for the new triangulation F,,: 

R(Vi ,  F L ) = O ,  R(Vi ,  F,)=O(h’).  (38) 
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The field V calculated at y h  from any set of internal variables { U ! }  (see Section 3.2) is discretely 
divergence-free at y h  and conversely a velocity field V could be generated by a set of internal 
variables iff R(V, y h ) = O .  To produce a divergence-free approximation from the set of velocity 
variables {V(Aj)) = Vin practice means to perform some changes in the velocity variables at the 
mid-side nodes (V(A, , ,+,)}= V M c  Vin order to achieve R(V,, yh)=o. 

One possibility is to alter all variables {V(A,, ,+,)} by choosing new values 
{V(Ai , i+ l ) }={  vr};=l for them as close as possible to the initial ones, say in the discrete 
least square norm, i.e. 

BV=O, (39a, b) 
s =  1 

where qs are weights which determine the admissible deviation of the initial value. This is a 
standard problem to be solved but one specific difficulty remains. Our experiments show that the 
numerical method is very sensitive to changes in the velocity variables at the free boundary and 
we have to use large weights qs for such variables. 

Thus in practice we proceed in a simpler way by just preserving some chosen velocities at n - rn 
mid-side points (all such points belonging to the free boundary are among them) and computing 
the others from (39b). Of course, this choice cannot be arbitrary because it is equivalent to 
choosing a set of internal variables (in general this set is different from the one fixed in Section 3.2 
and used in (34)) or a set of fluxes for computing the mesh ~treamfunct ion.~~ 

To find v in this way means to compute one presentation of V in internal variables (this is not 
unique, of course) and then to go back to the primitive ones. Such a procedure needs no extra 
programming because it is the same as the implementation of the initial conditions. 

The numerical experiments show the importance of the preservation of velocities at the free 
boundaries. Thus always include them in the basis and the values of the mesh streamfunction are 
preserved there. Next the mesh streamfunction is calculated consecutively by layers, first at 
neighbouring points to the boundaries (first layer) using the fluxes through the sides with one end 
at the interface. In this way the mesh streamfunction is defined at the first layer and this procedure 
is repeated recursively for the second layer and so on. We also experimented with other 
algorithms to choose the basic set of fluxes based on the assumption that the accuracy is worse in 
the regions with greater velocity gradients, but the results did not improve with respect to this 
simple one. Perhaps this is connected with the type of our problems, for which the quality of the 
approximation near the free boundary is crucial. 

It is easy to see that 

11 vh-Vh 11 1 =0(h2 ), (40) 
and hence the asymptotic accuracy of the method will not be affected. 

uniform norm: 
As a measure of the quality of the new approximation v h  we use its distance from V in the mesh 

RR(V, r h ) = m a x  IV(A,)-V(A,) I/max (V(A, )  1, A,  E F,. (41) 
The accuracy of this regridding algorithm is tested on both the analytical solution Vex of the 

Stokes flow past a unit sphere36 and the finite element solution V;pr of the same problem 
obtained as outlined in Sections 3.1 and 3.2. The field Vipr is obtained in internal variables and 
afterwards is converted to the initial variables form (19a); hence it is discretely divergence-free at 
the triangulation SL . The other test function-the standard finite element interpolant of the 
exact solution, V;,xh-is not discretely divergence-free at the triangulation S;. 

Both Vipr and v;,'h are considered on two uniform meashes y i , h  and y L , h  with four and 16 
finite elements respectively in a quarter-domain and truncated infinity at five sphere radii from 
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the body. Using the previously described algorithm, these velocity fields are employed to define 
the velocity field Vh on a new mesh Fh and its divergence-free approximation V ,  at 9 - h .  

We consider two new meshes T I , ,  and y z , h  which are non-uniform in the radial direction in 
the proportions 1 :2 and 1 : 2 : 3 : 4 respectively. The distance of v h  and the corresponding mesh 
streamfunction y h  from the exact solution (Vex, Ye')  is studied as well as the distance 
RR(V,, sb) of v,, from the initial field Vh. 

The results are given in Table I: the first two rows contain data for tr at TI,, and F z , h  
constructed from V e x  at Ti,, and F > , h ;  the last two rows contains the same information for BxP'. 
Data for the deviation R(V,, y h )  of the initial interpolant vh from the discretely divergence-free 
field v h  are also presented. 

It is clear that the FEM solution is not considerably worse then the exact one with respect to 
the regridding procedure. The convergence tendency is clearly visible. The accuracy for the 
streamfunction is much better than for the velocity because it converges as 0 ( h 3 )  in the uniform 
n0m.37 

3.4. Free surface computation and automatic choice of the time integrution step 

from the kinematic condition (5): 
Consider oue of the interfaces r with the equation S(x ,  t) = 0. A natural predictor step follows 

~ p ( ? ) = ~ ( t ) + A t P ( t ) +  0 ( A t 2 ) ,  vP(t)=v(x(t), t). (42) 

The problem (22) is solved in RP(?) to obtain the new velocity vc(x, ?). Then the correction is 
constructed: 

x'(?) = x (t) + Atv"(t) or xC (2) = x(t) + 0-5 At (vc ( t )  + vP(t)). (43a, b) 
The second equation has a truncation error 0 ( A t 3 )  if vp(t) and vc(t) are computed exactly and 

has proved experimentally to be better. 
Many authors have applied a fixed time integration step. This is a reasonable solution if we can 

work with small At. First we tried to work in this way but two main problems arose: spurious 
instability of the free boundary occurred and even non-physical non-smooth shapes (e.g. high 
peaks adjacent to deep valleys). Often the integration process goes well for a time period but after 
that the results are obviously non-physical. The computations have to be repeated with a smaller 
time step, but for different stages of the studied mechanical problems this requirement changes. 
Such experience forced us to develop the adaptive time-stepping algorithm. 

Let E be the total accuracy required for the evaluation of the free boundary. Then at every time 
step the following condition has to be satisfied: 

I X C M  - XP(d  Ic -= E A 4  (44) 
where x(q) is the parameterization of r (see equation (56)). 

Table I 

4 
16 
4 

16 

6.3 % 10.55 ?lo 6.373% 
4.2% 1.97% 2,22% 
6.9 Yo 12.25% 5.88% 
4.5% 2.2% 3 yo 
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This condition is equivalent to similar conditions on the velocity. For correction (43b) it reads 
as 

IVP(q)--c(4)Ic<2&. (45) 

Practically this control is on the tangential and normal components of velocity, but the 

To illustrate this, we consider the motion of S in the Eulerian approach. The kinematic 
tangential velocity is not connected essentially with the displacement of the interface. 

condition (3) can be written in the form 

d, S +(grad S, v )  = 0 (464 

8,s 11 N I( - = - v  * It, N = @ , S ,  %S) ,  = N /  II N II. (46b) 

or 

Hence theoretically the tangential velocity does not influence the displacement of the interface. 
In the Lagrangian approach this is true only with O(At2) because the tangent to the old boundary 
differs from the tangent to the new one with O(Ar). 

This can be explained as follows. Let us decompose, for example, the step (42) into two 
components, i.e. the normal displacement of the boundary, corresponding to (46), and the 
tangential one: 

- 
s h :  %(?)=X(t)+ArVP(t) '  n(t) .  (47) 

This step determines the new position of the boundary. Next we have to determine the new 
position of the mesh points at the interface. Hence the next step is 

x (2) = t (2) + At vP( t )  * z (t). (48) 
The two steps (47) and (48) are equivalent to (42). The curves (47) and (42) differ by O(At2) (see 

Figure 3). To force them to coincide, we can project the point 2 on s h .  We skip this operation 
owing to its relative complexity and consider (42) as an approximation for (47) and (48). 

Numerical experiments also prove that controlling only the normal component yields better 
results than (45). If the following inequality is satisfied, 

I vp * n(q)  - vc * n(q)  I c  = R(t)  < 2&, (49) 
then the step is considered to be legal. The new position of the boundary is determined by (43b) 
and by 

~ ( ? ) = 0 . 5 ( ~ ~ ( t ) + ~ ~ ( t ) ) .  (50) 

Figure 3. Motion of free boundary 
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If R(t)  > 2 ~ ,  the step is considered illegal, At is cut down to At /2  and the procedure is repeated. 
If R ( ~ ) < E ,  then time step At is increased to 2At. The absolute maximum value At,,, is 

We also control the smoothness of rh.  The maximum of the angle 8, = 2n - 8 is measured and 
previously defined to prevent an eventual infinite increase of the time integration step. 

controlled: 

max 8 0  < 8,,, , eo = 271- 0, (51) 
where 8 is the angle between the segments of the free boundary. 

If this angle is too large without a physical singularity at the point then the computed free 
boundary is also considered illegal. Both predictor and corrector steps are controlled. If (51) is not 
fulfilled then the step is rejected and At is decreased. 

The value of emax is usually taken to be about 11” in our numerical experiments. 
If the interface is not stable or the method is losing accuracy owing to an inappropriate mesh or 

to errors in the code, data or the mathematical model then At becomes very small. In such cases 
the time integration practically stops. Thus we can guarantee the accuracy E for all computed 
shapes of the free surface. 

The algorithm described works very well for all the problems considered. However, we have to 
mention that it is constructed for problems involving interfaces with considerable deformability. 
If this is not the case, the method still works but is not very efficient. The crucial point here is the 
predictor step (42) which is constructed for a deformable interface. In the case of stiff interfaces 
another formula has to be applied. 

3.5. Spline filtration of truncation error at interfaces 

The interface is a smooth curve but its numerical approximation is only a continuous curve. 
This additional information can be used to increase the efficiency of the computations. 

Thus we decided to smooth down the velocity field at the interface, which will also secure the 
smoothness of the interface via (42) and (43) if the initial shape is smooth. Conversely, from (42) 
and (43) it is clear that if the functions describing the free boundary, x( t )  and x(Z), are C’ then the 
velocity field at the interface is [C’l2 too. Thus we filtrate both components of the velocity 
independently employing cubic  spline^:^' 

n u Cai, b i l =  [a ,  bl, (52) 

(53) 

1 
SP(d I b , , b , ,  = A0 + A’ 4 + A , q 2  + A3q3, 

SP’(4) 111, = SP’M Ib, - 1  9 SP”(4) 111, = SP”(d I*, - I 9 i=2, . . . , n. 

In our numerical examples the free surface is symmetric and the boundary conditions are 
derived from the symmetry. If the axis y is the line of symmetry then it yields for u 

SP” (4) 111 = 0, SP”(4) Ib = 0. (54) 

(55 )  

For u the symmetry condition (9b) is applied directly: 

SP(4)lb“. 1 = SP(4) lbn- I .  

There is no convenient general theory for the choice of the parameter q. It seems natural to 
employ the parameterization of r,, generated by the parametrization of the finite element sides. 
Consider the part of the boundary which is an FE side ai = [a j ,  b j ] :  

(56) 
where the parameter qi E [ - 1,1]. Let the boundary consist of n such parts, numbered so that 

ai: x i (q i )=x j ,  j +  + 0 5 ( x j +  - x j ) q i + 0 5 ( x j + x j +  -2xj ,  j +  l )q i  2 , 
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consecutive numbers correspond to neighbouring sides. The spline points are chosen to coincide 
with the FE nodes at the interface and their number is 2n+ 1. The parametrizations (56) are 
summed directly, i.e. if x = x(q)Eai then 

q(x)=2i-n-l+q,(x), q~[2i-n-2,2i-n].  (57) 

The values Sp(qs) of the spline at the nodes qs= 1, . . . , 2n+ 1, are considered as parameters. 
Both components of velocity are smoothed independently. The function to be minimized reads 
for the u-component of velocity as 

2 n +  1 

The weights p s  determine the deflection of Sp(qs) from the value of the u-component of velocity 
at the spline nodes qs, i.e. the deviation of the new values of velocity in the points at the free 
boundary from the old one. The weight p corresponds to the requirement for minimal curvature 
of the spline. 

There is no general theory on how to choose these parameters. We employ the choice 

pi= 1, i=  1, 3, . . . , 2 n +  1, pi=085, i=2,4,  . . . ,2n, p=C.2n. (59) 

The parameter values p i  at a side’s ends are chosen to be 20% greater than at the mid-side 
points because we know from numerical experiments that the solution is slightly worse at the 
former. The coefficient p is taken to be proportional to the length of the interval [a, b] and C is 
chosen between 0.5 and 1.0. 

It is clear that the results with and without the use of spline smoothing should coincide. We do 
not know an exact solution for an appropriate free boundary problem to use as a test. Thus we 
just solve the problem of a rising bubble in a spherical container at Re = 5 and Eo = We/Fr = 9 
studied by Shopov et dZ8 with and without the use of splines and compare the results in Table 11. 

The algorithm without spline smoothing performs during the computations the following time 
steps: one with At = 006, one with At = 0.02, 38 with At = 0.0266, one with At = 0.053, altogether 
41 legitimate steps, two steps are cast down, average time step At =0.028. The computations with 
spline smoothing proceed in the following way: three steps with At =0.06, four with At =012, two 
with At=008 ,  one with At =0.32, altogether 12 legitimate steps, one cast down, average At =0.1. 
The computer time is 3.4 times less when splines are employed. 

We have done many other experiments which also confirm that the difference between the 
results with and without spline smoothing is within the range of error of the method. Moreover, 
they show that the use of splines decreases the CPU time by 20%-70%. However, this technique 
has to be used carefully, with small enough Atmax and smoothing coefficient p .  As usual there 
exists a delicate balance between the computer time used and the exactness of the results. 

Table 11. Comparison in the uniform norm IxIc=IxIc+Iylc 
between the results with and without spline smoothing 

Time Difference 1x1, Time Difference I x Ic 

0.12 0.234 x lo-’ 0.72 0.956 x lo-’ 
0.18 0.196 x lo-’ 0.76 0.935 x lo-’ 
0.24 0250 x lo-’ 0.80 0.923 x lo-’ 
0.35 0-455 x lo-’ 0.88 0.971 x lo-’ 
0.48 0.659 x lo-’ 1.20 0.148 x lo-’ 
0.60 0.824 x lo-’ 
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4. NUMERICAL TESTS, COMPARISONS AND EXAMPLES 

All problems under consideration are transient and the steady state (if it exists) is a limit of the 
unsteady one for sufficiently large time. Unless otherwise stated, the problem is assumed to be 2D 
axisymmetric. 

4.1. Tests and comparisons 

Deformation of a bubble by gravity and ‘antigravity’. This is a simple model problem without 
direct physical meaning, which is similar to deformation of a fluid particle in a unaxial straining 
flow.’* It is used to test the technique as a whole as well as the efficiency of its variants. This is a 
suitable test because some qualitative characteristics of the flow can be assessed is a preliminary 
step and the numerical results can be estimated with respect to this assessment. 

We consider an initially spherical bubble submerged in a quiescent liquid, the origin of the co- 
ordinate system being chosen to coincide with the position of the bubble centroid in the initial 
moment t=O. It is assumed that the only external force is 

F = -sign (y) pge, 

where e is the unit vector in the Oy-direction, p is the density of the liquid and g is the 
gravitational acceleration, i.e. the gravity force acts above the axis y = 0 and the ‘antigravity’ force 
acts below this axis. It is evident from the mathematical formulation (see Section 2) that the stable 
static state of the free boundaries (if such a state exists) depends only on the ratio of Weber and 
Froude numbers. This fact is used to verify the approximation of the surface tension and gravity 
forces. 

The problem is considered in a quarter of the domain because of the symmetry with respect to 
the Ox- and Oy-axis. The undeformed bubble radius I is chosen as a reference length and the 
reference velocity is V = p / l p .  With this choice the Reynolds number is equal to one. 

As mentioned before, the steady interface shapes for We = 1, Fr = 1, We = 2, Fr = 2 and We = 4, 
Fr = 4 have to coincide and indeed the numerically obtained shapes differ by 1 YO. The dependence 
of the fihal shapes on Eo = We/Fr is illustrated in Figure 4. 

In order to assess the convergence of the method, this problem is solved at We = 5, Fr = 0.0222 
using three different meshs d,  98 and W consisting of nine, 36 and 144 elements respectively. 
Mesh &I (see Figure 5 )  is obtained by dividing every element of mesh d into four parts uniformly 
in both directions. Mesh ‘$2 is obtained in the same way from mesh 9. 

The dependence of the distance between the bubble shapes obtained by different meshes on 
time is presented in Figure 6. These results are obtained in the case of comparatively large 
deformations of the bubble surface (see Figure 7). The distance between the shapes obtained using 
meshes d and 98, D,,(t), is drawn with broken line, while Dg-w(t) is shown by a continuous line. 
The 9-‘$2 distance is less than 0.18% from the bubble radius and is three times less than the 
d-9 one. Thus the technique shows good convergence with respect to the spatial discretization. 
The maximal time step At,,, and the overall measure of the accuracy, E, are the same in all 
computations, namely Atmax = 0 2  and E = 0.05. 

Capillary motion of a liquid in a tube. This is a simple test problem with a contact line, which 
has a known solution for the static weightless state.39 Initially the tube is filled with a quiescent 
liquid and the free surface is horizontal (the initial contact angle is n/2). In this case we assume 
that the static contact angle is z/4. The capillary forces act to move the free surface to the stable 
position. The time evolution of the free surface is shown in Figure 8 for Re= 1, We= 1, Fr=O. 
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Figure 4. Bubble shapes for Eo=O, 1, 5, 10 

Figure 5. Initial finite element grid 
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Figure 7. Time evolution of bubble shape for We = 5 ,  Fr = 00222 

The computations are stopped when the steady state shape is reached for t=5.9; at this 
moment the velocities in the liquid are less than 007%. The difference between numerical and 
exact solutions for the stable shape is 0.03%. The contact angle differs from the prescribed value 
z/4 by 0.0006 rad. 

Motion of a bubble in an unbounded liquid. A complete set of comparisons between the results of 
Bhaga and Weber,4' Ryskin and Leal," Christov and Volkov' and Hnat and Buckmaster4' for 
a stationary bubble rising in a viscous liquid is presented by Shopov et ~ 1 . ' ~  Here we shall restrict 
ourselves to a comparison with the result of Bhaga and Weber.4' 
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Figure 8. Position of free surface at different instants 

It is well known42 that in the limit case of zero Reynolds number the steady shape of the rising 
bubble is spherical for any Weber number. Bhaga and Weber4' proved experimentally that the 
stable spherical shape is preserved when Re<0*5 and W e < l .  In their experiment with an air 
bubble in aqueous sugar solution for Re = 0.078, M = 71 1, Eo = 8.67 (We = 0.055, Ca = 0.7) the 
bubble shape is practically spherical and stable. 

Our numerical experiment for the same values of the governing parameters produces a bubble 
shape which differs from a sphere by less than 3%. The calculations for this set of parameters are 
repeated on two different meshes (containing 48 and 60 elements). The difference between the 
steady bubble shapes obtained is less than 1%. Thus it is more appropriate to present these 
shapes as r = r ( 8 )  in a polar co-ordinate system with the origin at the centroid of the bubble (see 
Figure 9). 

An entrainment problem. An initially quiescent liquid occupying a rectangular basin is con- 
~ i d e r e d . ~ ~  The right boundary impulsively starts to move upwards with unit velocity. No contact 
angle is specified and the liquid is assumed to adhere to the moving wall. This approach is not 
very natural from a physical point of view but mathematically it is well posed. The problem 
involves high gradients of the velocity near the wall and large deformations of the interface. The 
meshes at t = 0 and 051  are presented in Figure 10. It is a severe test for our method because the 
elements near the moving boundary become deformed easily and the problem requires compara- 
tively many redefinitions of meshes (about 10). 

Our results and Frederiksen and Watts' results43 for Re = 1, We = 1, Fr  = 0.01 practically 
coincide (the graphics of the free boundary are identical at t=0.51). The position of the free 
boundary and the velocity field are shown in Figure 11. 
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Figure 9. Graphics of 1 -r(O): ---, 48-element mesh; -, 60-element mesh 

A 

t=0.51 t=O 

Figure 10. Initial and final finite element grids 

4.2. Numerical examples 

Motion of a bubble. The motion of a bubble due to buoyancy in an unbounded viscous liquid 
at relatively high Reynolds and Eotvosh numbers is considered. The volume-equivalent radius of 
the bubble is chosen as a characteristic length and its terminal velocity as a characteristic velocity. 
In this example we try to get a feeling.for when the unstable regimes occur in the numerical 
calculations. Thus we fix the Reynolds and Eotvosh numbers and look for a stable shape. If one is 
reached then we increase the parameters until there is no stable state. This situation takes place at 
Re=47, Eo=29 in Figure 12; the first shape is the steady one at Re=6.65, Eo=29. The 
experimental result of Bhaga and Weber4’ for identical parameters shows that the steady shape of 
the bubble is a spherical cap with a very sharp edge. In our numerical experiment the shape of the 
bubble is qualitatively the same for sufficiently large time. However, it is not absolutely steady. It 
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t=0.51 

Figure 1 1 .  Numerical solution for Re=l ,  We=1, Fr=QOl, t=0,51 

/ \ 

Figure 12. Numerical shapes for Re = 47, Eo = 29 

is clear in Figure 12 that a surface wave appears initially in the front part of the bubble and then 
gradually moves to its rear. The experimental study4' shows that this set of parameters is near the 
critical values when the free boundary and the flow lose stability and so-called skirted regimes 
appear. 

Interaction of a bubble with a rigid wall. Another interesting problem is the interaction of a 
bubble which moves at its steady state regime with a rigid wall. The solution of this problem is 
obtained by taking a steady state solution for a bubble rising due to buoyancy in an unbounded 
liquid and using it for an initial condition. 
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t= 2.88 

Figure 13. Motion of a bubble to a plate for Re = 19.4, We = 15.3, Fr =0.38, d = 1.5 

Figure 14. Hydrodynamical interaction of two bubbles and a plate for Re = 9, We =40, Fr = 2 

Numerical results for an initial distance d = 1.5 are presented in Figure 13. An inertial concavity 
develops quickly. This leads to very sharp rims on the particle. Self-crossing of the liquid-gas 
interface takes place in the last shape presented. This is a sign that small bubbles will separate 
from the rim, but modelling of this stage is not done because it is outside the scope of the present 
technique. 

Motion oftwo bubbles towards a rigid wall. The following problem treats the parallel motion of 
two bubbles towards a rigid wall. We consider the planar case, i.e. we assume that the bubbles are 
in a Hele-Shaw cell and can be considered as two-dimensional. The numerical example presented 
in Figure 14 shows the capability of the numerical technique to solve free boundary problems in a 
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t=O. 36 

t = o .  0 

u 
t = o .  49. 

t = O .  67 

Figure 15. Motion of a compound drop to a plate for Re= 1, We=5, Fr=0.222,1=2,  ~ = 0 . 1  ~ = 2 ,  d =  1.5, e = 0 9  

multiply connected domain. As is clear from the figure, the two bubbles influence each other and 
as a result their shapes are not symmetrical as in the case of single particle for similar 
parameters. 2* 

Hydrodynamical interaction of a compound drop with a plate. The motion of an A-type 
compound drop towards a rigid wall under gravity is considered in this example. The particle 
consists of a gas bubble completely covered with a layer of a liquid. Initial conditions are: 
perfectly symmetrical compound drop and zero velocity field. The initial distance between the 
centroid of the particle and the plate is d =  1.5. 

The evolution of the interfaces at intermediate Reynolds number is presented in Figure 15. At 
t = 0.67 a double film is formed between the gas phase and the wall and an inertial concavity 
appears at the rear of the particle. A similar effect is observed in the study of a bubble rising 
towards 

5. CONCLUSIONS 

In this paper we have presented an FE method for the transient Navier-Stokes equations in 
domains with free boundaries. The method is of Lagrangian type and employs mesh redefinition 
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and a divergence-free basis. Particular attention is paid to the case of surface tension as a surface 
force. The method is provided with automatic time step selection, accuracy control and optional 
spline filtration of the velocities at the deformable interfaces. Treatment of one or several free 
surfaces of gas-liquid or liquid-liquid type is possible. 

Comparisons with other numerical results, some steady state exact solutions and solutions on 
two grids are presented. They show good agreement and reliability of the method. The method 
works well for low and intermediate Reynolds numbers and for arbitrary deformability of the free 
surface, but is not so robust in the case of very low deformability. This is connected with the 
concrete predictor step employed, which is constructed for intermediate and large deformability. 
Perhaps this inefficiency could be avoided by the use of another predictor. 

The described technique is tested on a number of problems with free surfaces and numerical 
examples related to the dynamics of bubbles or multiplde drops are included. More numerical 
examples can be found in Reference 28. They show that this method is a reliable and flexible tool 
for multiphase flows and related problems. 
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